Final exam solutions
Problem 1: Prove that it $\lim _{n \rightarrow \infty} x_{n}=x$, and $x>0$ then there exists ${ }^{n \rightarrow \infty} M \in \mathbb{N}$ such that $x_{n}>0$ for all $n>M$.

Solution:
Chose ϵ such that $0<\epsilon<x$.
Then, by definition of limit $\exists M \in \mathbb{N}$ such that

$$
\left|x_{n}-x\right|<\epsilon \quad \text { it } \quad n>M .
$$

which means that

$$
x-\epsilon<x_{n}<\epsilon+x \text { for all } n>M \text {. }
$$

As $x-\epsilon>0$ tor our choice of ϵ we obtain that $X_{n}>0$ for all $n>M$.

Problem 2: If f is a continuous function on an interval $[a, b]$ and $|f(x)|=1$ for all $x \in[a, b]$ show that f is a constant function.

Solution:
$|f(x)|=1 \Longrightarrow f(x)$ can only take values ± 1. Assume f is not a constant function, then we can find two points $x_{0}, x_{1} \in[a, b]$ such that $f\left(x_{0}\right)=1, f\left(x_{1}\right)=-1$.

As f is continuous, it then takes all intermediate values from -1 TO +1 on the interval $\left[x_{0} x_{1}\right]$, which is contradiction

Problem 3:
Let $\left(a_{n}\right)$ and (b_{n}) be sequences of real numbers. Suppose b_{n} is monotonically decreasing $\lim b_{n}=0$, and $\left|a_{n}\right|=b_{n-\infty}^{-} b_{n+1}$ for all $n \in \mathbb{N}$.' Prove that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
Solution:
$\sum_{n=1}^{\infty} a_{n}$ converges absolutely it $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. Partial sum $S_{n}=\left|a_{1}\right|+\ldots+\left|a_{n}\right|$, and $\left|a_{n}\right|=b_{n}-b_{n+1} \Rightarrow$

$$
\begin{aligned}
& S_{n}=\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\ldots+\left(b_{n}-b_{n+1}\right)=b_{1}-b_{n+1} \\
& \text { clearly } \quad \lim _{n \rightarrow \infty} S_{n}=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}=b_{1}
\end{aligned}
$$

Problem 4:
Suppose $\left(x_{n}\right)$ is a sequence that is bounded and such that $x_{1}, x_{2}, x_{3} \ldots$ are distinct. Assume that the set $\left\{x_{n}\right\}$ has just one limit point x. Prove that He sequence is convergent and its limit is X.

Solution:
Assume x_{n} does not converge to x. Fix $\in>0$. Then tor each $k \in \mathbb{N}$ we can find $X_{n k} \in\left\{x_{n}\right\}$ such that
(*) $\quad\left|x_{n_{k}}-x\right|>E, \quad$ for $\quad n_{k}>k$. Indeed, it such $x_{n k}$ doesn't exist then
$\left|x_{n}-x\right|<\epsilon$ for all $h>k$ which means that $\left(X_{n}\right)$ converges to X. Thus we have a subsequence ($x_{n k}$).
As $\left(x_{n}\right)$ is bocended $\left(x_{n_{k}}\right)$ is also bounded. By W.T. $\left(x_{n k}\right)$ hus convergent subsequence and we denote its limit y. Note that $x \neq y$ by (*).
We conclute that set $\left\{x_{n}\right\}$ has at least 2 limit points x and y. \Rightarrow Contradiction.

Problem 5:
Assume that f is dittereatiable for all $x \in \mathbb{R}$.. If $f(0)=1$ and $\left|f^{\prime}(x)\right| \leqslant 1$ for all $x \in \mathbb{R}$. PRove that $|f(x)| \leqslant x+1$ for all $x>0$.

Solution: By contradiction, assume there is $x_{0}>0$ such that $\left|f\left(x_{0}\right)\right|>x_{0}+1$. We have two cases:

1) $f\left(x_{0}\right)>x_{0}+1$ or
2) $f\left(x_{0}\right)<-x_{0}-1$

In first case, by intermediate value theorem tor derivative, there is a point $c>0$
such that

$$
f^{\prime}(c)=\frac{f\left(x_{0}\right)-f(0)}{x_{0}-0}>\frac{x_{0}+1-1}{x_{0}}=1
$$

$\Rightarrow\left|t^{\prime}(c)\right|>1 \Rightarrow$ Contradiction
In second case, similarly

$$
f^{\prime}(c)=\frac{f\left(x_{0}\right)-f(0)}{x_{0}-0}<\frac{-x_{0}-1-1}{x_{0}}
$$

As the last number is negative, we obtain

$$
\left|f^{\prime}(c)\right|>\frac{x_{0}+2}{x_{0}}>1
$$

Contradiction

Problem 6
let $\quad f(x)=\sum_{n=1}^{\infty} \frac{1}{x^{2}+n^{2}}$
(a) Show that $f(x)$ is continuous.
(b) Show that $f(x)$ is ditterentiable and compute its derivative (tint $2|x| n \leqslant x^{2}+n^{2}$)
Solution:
(a) note $\frac{1}{x^{2}+n^{2}}$ is continuous tor any $n=1,2, \ldots$
note that $\left|\frac{1}{x^{2}+n^{2}}\right| \leqslant \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Thus by Weierstrass M-test the sum converges unitormlg. By Contincoos limit theorem $f(x)$ is also continuous.
(b) First nose that $(|x|-n)^{2} \geqslant 0$

So $x^{2}+n^{2}-2|x| n \geqslant 0 \quad \Rightarrow \quad x^{2}+n^{2} \geqslant 2|x| n$.
Next:

$$
\left|\left(\frac{1}{x^{2}+n^{2}}\right)^{\prime}\right|=\left|-\frac{2 x}{\left(x^{2}+n^{2}\right)^{2}}\right|=\frac{2|x| n}{n\left(x^{2}+n^{2}\right)^{2}} \leqslant \frac{1}{n\left(x^{2}+n^{2}\right)} \leqslant \frac{1}{n^{3}}
$$

thus, by weierstrass M-test, the sum

$$
\sum_{n=1}^{\infty}\left(\frac{1}{x^{2}+n^{2}}\right)^{\prime} \text { converyes unitormly. }
$$

Applying the therem abocet unitorm convergence and ditterentiation we conclude that $f(x)$ is ditterentiable and

$$
f^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{2 x}{\left(x^{2}+n^{2}\right)^{2}}
$$

Problem 7. Let us define $x \in \mathbb{R}$ to be a bocendary point of a set A it every neighborhood ot x whtains a print in A and A^{\prime}. Let ∂A denote the set of all boundary points of A. Show that A is open it and only it $\partial A \cap A=\varnothing$.
Solution: (\Rightarrow)
Assume $\partial A \cap A=\varnothing$ then every $x \in A$ hus a neighborhood which is contained in A. Indeed, it for some $x \in A$ it is not possible to find a neigh borhood which is entikely in A, then every neighborhood of A contains points in A^{c} thus $x \in \partial A$ which contradicts $A \cap \partial A=\varnothing$.
$\Rightarrow A$ is open.

$$
(\Leftarrow)
$$

Assume A is open, then, by definition, each $x \in A$ has a heighborhood $V(x)$ such that $V(x) \subseteq A$ and thus $V(x) \cap A^{c}=\varnothing$. This means that $x \notin \partial A$.
As this is true tor all $x \in A$ we conclude that $A \cap \partial A=\varnothing$

Problem 8: Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}5 x, & x \in \mathbb{Q} \\ x^{2}+6, & x \notin \mathbb{Q}\end{cases}
$$

Prove that f is discontinuous at $x=1$ and continuous at $x=2$.
Solution: $x=1$:
By definition $f(1)=5$. It f is continuous at $x=1$ then $\lim f\left(x_{n}\right)=5$ for any sequence $\left(x_{n}\right)$ such that $\lim x_{n}=1$. Consider irrational sequence, for instance $x_{n}=1+\frac{\pi}{n}$ we have $\lim x_{n}=1$
bat $\lim f\left(x_{n}\right)=7 \Rightarrow f$ is not cont. at $x=1$.
$x=2$:
As $5 x$ and $x^{2}+6$ (as functions on \mathbb{R}) are both continuous, $\forall \in>0$ we can find δ_{t}^{\prime} and δ_{ϵ}^{2} such that

$$
\begin{array}{lll}
|10-5 x|<\epsilon & \text { it } & |x-2|<\delta_{\epsilon}^{1} \\
\left|10-\left(x^{2}+6\right)\right|<\epsilon & \text { it } & |x-2|<\delta_{\epsilon}^{2}
\end{array}
$$

choose $\delta=\min \left(\delta_{\epsilon}^{\prime}, \delta_{\epsilon}^{2}\right)$ then, clearly

$$
|10-f(x)|<\epsilon \quad \text { it }|x-2|<\delta
$$

Problem 9: Show that $(a,+\infty)$ has the same cardinality as \mathbb{R}.

Solution:
The function $f:(a,+\infty) \rightarrow \mathbb{R}$

$$
x \longrightarrow \ln (x-a)
$$

does the trick

Problem 10
Giren sets A and B, define

$$
A+B=\{a+b: a \in A, b \in B\}
$$

Prove that $\sup (A+B)=\sup (A)+\sup (B)$.
Solution. By definition of supremam

$$
\begin{array}{ll}
a \leqslant \sup (A) & \forall a \in A \\
b \leqslant \sup (B) & \forall b \in B
\end{array}
$$

Thus

$$
a+b \leqslant \sup (A)+\sup (B) \quad \forall a+b \in A+B
$$

Thus, $\sup (A)+\sup (B)$ is an upper bound s A $A+B$ and $\quad \sup (A+B) \leqslant \sup (A)+\sup (B)$. (*)
Now, by definition of sup:

$$
a+b \leqslant \sup (A+B) \quad \forall a \in A, b \in B
$$

thus

$$
a \leqslant \sup (A+B)-b \quad \forall a \in A, b \in B
$$

This means that $\sup (A+B)-b$ is an upper bound
of A for any $b \in B$, thus

$$
\sup (A) \leqslant \sup (A+B)-b
$$

In turn, this implies that

$$
b \leqslant \sup (A+B)-\sup (A) \quad \forall b \in B
$$

thus $\sup (A+B)-\sup (A)$ is an upper bound of B and so

$$
\sup (B) \leqslant \sup (A+B)-\sup (A)
$$

Which means that $\sup (A)+\sup (B) \leqslant \sup (A+B)$ Together with $(*)$ we wnclude

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

