Final exam solutions

Problem 1: Prove that it $\lim_{n \to \infty} x_{n-x}$, and x > 0 then there exists $M \in M$ such that $x_n > 0$ for all h > M.

Solution:

Chose \in such that $0 < \in < \times$. Then, by <u>definition of limit</u> $\exists M \in \mathbb{N}$ such that

$$|X_n-x| < \varepsilon$$
 it $h > M$.

which means that

X-E < Xn < E+X for all n > M. As X-E > O for oak choice of E we obtain that Xn > O for all n > M. Problem 2: If f is a continuous function on an interval $[a_1b]$ and |f(x)| = 1 for all $x \in [a_1b]$ show that f is a constant function.

Solution:

 $|f(x)|=1 \implies f(x)$ can only take values ± 1 . Assume f is not a constant function, then we can find two points $x_0, x_1 \in [a, b]$ such that $f(x_0)=1$, $f(x_1)=-1$. As f is continuous, it then takes all intermediate values from -1 to ± 1 on

the interval [xox,], which is contradiction

Problem 3:
let (an) and (bn) be sequences of real
numbers. Suppose bn is monotonically
decreasing limbn=0, and
$$|a_n| = b_n - b_{n+1}$$

for all $n \in N$. Prove that $\sum_{n=1}^{\infty} a_n$
converges absolutely.
Solution:
 $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$
converges. Partial sum $S_n = |a_1| + ... + |a_n|$,
and $|a_n| = b_n - b_{n+1} =$
 $S_n = (b_1 - b_2) + (b_2 - b_3) + ... + (b_n - b_{n+1}) = b_1 - b_{n+1}$
Clearly $\lim_{n \to \infty} S_n = b_n - \lim_{n \to \infty} b_n + a_n = b_n$
Problem 4:
Suppose (X_n) is a sequence that is bounded
and such that $X_1, X_2, X_3...$ are distinct.
Assame that the set $\{X_n\}$ has just
one limit point X . Proove that
the sequence is convergent and its limit
 $is X_n$

Solution; Assume Xn does not converge to X. Fix E>O. Then for each KEN we can find Xnk E (Xn) such that (X) $|X_{nK} - X| > E$, for $n_K > k$. Indeed, if such Xnk doesn't exist then IXn-X < E for all h>k which means that (Xn) converges TO X. Thus we have a subsequence (Xnix). As (Xn) is bounded (Xnx) is also bounded. By <u>W.T.</u> (Xnx) has convergent subsequence and we denote its limit y. Note that x = y by (*). We conclude that set d'Xny has at least 2 limit points X and y. =) Contradiction.

Mh

Problem 5:

Assume that
$$f$$
 is differentiable for all $x \in \mathbb{R}$.
If $f(o)=1$ and $|f'/x|| \leq 1$ for all
 $x \in \mathbb{R}$. Prove that $|f(x)| \leq X+1$
for all $X > 0$.

Solution: By contradiction, assume there is
$$x_0 > 0$$

such that $|f(x_0)| > x_0 + 1$. We have two cases:
i) $f(x_0) > x_0 + 1$ or 2) $f(x_0) < -x_0 - 1$
In first case, by intermediate value the orem
tore derivative, there is a point C>0

such that

$$f'(c) = \frac{f(x_{0}) - f(0)}{x_{0} - 0} > \frac{x_{0} + (-)}{x_{0}} = 1$$

=)
$$|f'(c)| > 1 =$$
 Contradiction
In second case, similarly
 $f'(c) = \frac{f(x_0) - f(0)}{x_0 - 0} < \frac{-x_0 - 1 - 1}{x_0}$

As the last number is negative, we obtain $|f'(c)| > \frac{X_0 + 2}{X_0} > 1$

Contradiction

Ma

Problem 6 $le+ f(x) = \sum_{x^2+\mu^2}^{\infty} \frac{1}{x^2+\mu^2}$ (a) Show that f(x) is continuous. (b) Show that f(x) is differentiable and compute its derivative (Hint $2|x| \le x^2 + h^2$) Solution: (a) note X2+12 is continuous for any h=1,2, --hote that $\left|\frac{1}{x^{2}+h^{2}}\right| \leq \frac{1}{h^{2}}$ and Z hr converges. Thus by Weievstrais <u>M-test</u> the sum converges unitormly. By Continuous (imit theorem f(x) is also continuous. (b) First note that $(|X| - n)^2 \ge 0$ So $x^2 + n^2 - 2|x| n \ge 0 \implies x^2 + n^2 \ge 2|x| n$. Nex+: $\left[\left(\frac{1}{x^2 + h^2} \right)' \right] = \left[-\frac{2x}{(x^2 + h^2)^2} \right] = \frac{2|x|h}{h(x^2 + h^2)^2} \leqslant \frac{1}{h(x^2 + h^2)} \leqslant \frac{1}{h^3}$

thus, by weievstrass M-test, the sum

$$\sum_{n=1}^{\infty} \left(\frac{1}{x^{2}+n^{2}}\right)^{\prime} \frac{\text{converges unitarmly.}}{\text{and the theorem aboat unitarm convergence}}$$

$$\frac{\text{and differentiation}}{f(x) \text{ is differentiable and}} \quad \text{we conclude that}$$

$$f(x) \text{ is differentiable and}$$

$$f(x) = -\sum_{n=1}^{\infty} \frac{2x}{(x^{2}+n^{2})^{2}}$$

Problem 7. Let us define XER TO BE a boundary point of a set A it every neighborhood of X wontains a point in A and A. let 2A denote the set & all Boundary points & A. Show that A is open it and only it $\partial A \cap A = \emptyset.$ Solution: (=>) Assume DANA=Ø then every XEA has a neighbox hood which is contained in A. Indeed, it for some XEA it is not possible to find a neighborhood which is entirely in A, then every neighborhood of A contains points in A^c thus $x \in \partial A$ which contradicts $A \cap \partial A = \emptyset$. =) A is open. $|\langle = \rangle$ Assume A is open, then, by definition, each XEA has a heighborhood V(x) such that $V(x) \leq A$ and thus $V(x) \cap A^{c} = \emptyset$. This means that $X \not\in \partial A$. As this is true for all X E A we conclude that $A \cap \partial A = \emptyset$

Ma

Problem 8: Define
$$f: \mathbb{R} \to \mathbb{R}$$
 by
 $f(x) = \begin{cases} 5x , x \in \mathbb{Q} \\ x^{2}+6 , x \notin \mathbb{Q} \end{cases}$
Prove that f is discontinuous $a + x = 1$
and continuous $a + x = 2$.
Solution: $x = 1$:
By definition $f(1) = 5$. If f is continuous
 $a + x = 1$ then $\lim_{n \to \infty} f(x) = 5$ for any sequence (x_n)
such that $\lim_{n \to \infty} x_n = 1$. Consider irrational sequence,
for instance $x_n = 1 + \frac{\pi}{n}$ we have $\lim_{n \to \infty} x_n = 1$
bat $\lim_{n \to \infty} f(x_n) = 7 \Rightarrow f$ is not cont. $a + x = 1$.
 $\frac{x=2!}{As}$
As $5x$ and $x^2 + 6$ (as functions on \mathbb{R})
we both continuuous, $H \in So$ we can find
 S'_{ϵ} and S'_{ϵ} such that
 $|10 - 5x| \leq \epsilon$ if $|x-2| \leq S'_{\epsilon}$
 $|10 - (x^2+6)| \leq \epsilon$ if $|x-2| \leq S'_{\epsilon}$
 $lion = S = \min_{n} (S'_{\epsilon}, S'_{\epsilon})$ then, deardy
 $|10 - f(x)| \leq \epsilon$ if $|x-2| \leq S$

Problem 9: Show that
$$(a_{1}+\infty)$$

has the same cardinality as R.
Solution:
The function $f: (a_{1}+\infty) \longrightarrow R$
 $x \longrightarrow \ln(x-a)$
does the trick
Problem 10
Given sets A and B, before
 $A+B = (a+b:a\in A, b\in B)$
Prove that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
Solution: By before that $\sup(A+B) = \sup(A) + \sup(B)$.
 $A+b \leq \sup(A) + \sup(B)$ $\forall a+b \in A+B$
Thus $a+b \leq \sup(A+B) \leq \sup(A) + \sup(B)$. (\forall)
Now, by before that $\sup(A+B) = \lim_{A \to B} (\forall a+B) = \lim_{A \to B} (\forall a$

of A for any
$$b \in B$$
, thus
 $sup(A) \leq sup(A+B) - b$
In turn, this implies that
 $b \leq sup(A+B) - sup(A)$ $\forall b \in B$
thus $sup(A+b) - sup(A)$ is an upper boand $d = B$
and so
 $sup(B) \leq sup(A+B) - sup(A)$
Which means that $sup(A) + sup(B) \leq sup(A+B)$
Together with (X) we wonclude
 $sup(A+B) = sup(A) + sup(B)$