Lecture 2: Completeness of \mathbb{R}
Rational numbers, $\mathbb{Q}=\{a / b, a, b \in \mathbb{N}, b \neq 0\}$ we have t, \cdot, < real numbers
\mathbb{R}

Q
cannot be represented as a / b

$$
\Rightarrow \sqrt{2} \notin Q, \pi \notin \mathbb{Q} .
$$

Today: what does it mean " \mathbb{R} is complete" or "has no holes".

Axiom st completeness:
Every non-empty subset ot/ Real numbers $A \subseteq \mathbb{R}$ that is bounded above
has a least upper bound.
1
Doesnt hold for \mathbb{Q}.
Deft: A set $A \subseteq \mathbb{R}$ is bounded from above if there exists (a) number $b \in \mathbb{R}$ such that $a \leqslant b$ for all $a \in A$. In this case, b is called an upper bound it A.

Example:

$$
I=(0,1) \subseteq \mathbb{R}
$$

$b=1$ - an upper bound b.c. $a \in I \Rightarrow a \leqslant 1$
$b=7$ - an upper bound b.c. $a \in I \Rightarrow a \leq 7$.
\Rightarrow upper bound is not unique.

$$
I=(0,+\infty)-\text { no upper bound }
$$

Det: A set $A \leq \mathbb{R}$ is bocended from below it there exists a number $l \in \mathbb{R}$ such that $\quad l \leqslant a$ for all $a \in A$.

$$
\text { ''l = lower bound of } A^{\prime \prime}
$$

Ex:

$$
\begin{gathered}
I=(0,1) \\
0-\text { is ok. } \\
-1-\text { is ok } \\
--\cdots \\
I=(-\infty, 0)-\text { then are no }
\end{gathered}
$$

lower bounds.

Det: A Real number $s \in \mathbb{R}$
is the least upper bound of a set $A \subseteq \mathbb{R}$ if:
(1) S is an upper bound.
(2) it b is any other upper bound then $s \leqslant b$.

Notation: $\quad S=\sup (A)$
Example:

$$
\begin{aligned}
& I=(0,1) \longleftarrow \sup (I)=1\}^{\text {sup } I)} \begin{array}{c}
\text { may } \\
\text { or may } \\
\text { not } \\
\text { be an }
\end{array} \\
& \left.I=(0,1]^{k} \sup (I)=1\right]_{\text {elem. }}^{\text {st } I .} \\
& I=\left\{1-\frac{1}{n^{2}}, n=1,2,3 \ldots\right\} \\
& \left\{0,1-\frac{1}{4}, 1-\frac{1}{9}, \ldots\right\}
\end{aligned}
$$

$$
\longrightarrow \underset{1 \text { is an abler bound }}{ }\left\{0, \frac{3}{4}, \frac{8}{9}\right\} \leftarrow \text { sap }(I)=1 \text {. }
$$

1 is an upper bound
let $b=\sup (I)$, assume $b \neq 1$
\Rightarrow Hen $b<1$ then we can
find N large enoug so that

$$
b<\quad 1-\frac{1}{N^{2}}
$$

\Rightarrow Contradiction because $1-\frac{1}{N^{2}} \in I$ but $1-\frac{1}{N^{2}}>b=\sup (I)$.
$/ 1$
Deft: Greatest lower bound"
....
\Rightarrow Notation: $\inf (A)$

Example: $I=(0,1) \Rightarrow$ inf $(\hbar I)=0$.

$$
\begin{aligned}
& I=(0,1) \\
& I=[0,1)
\end{aligned}
$$

Det: $a_{0} \in \mathbb{R}$ is a maximum
of a set A it a_{0} is an element of A and $a_{0} \geqslant a$ for all $a \in A$.
Pet: $a \in \mathbb{R}$ is a ninimum....

Example:

$$
\begin{gathered}
I=(0,2) \rightarrow \operatorname{int}(I)=0, \text { sup }(t)=2, \\
I=[0,2) \operatorname{int}(I)=0, \text { sup }(I)=2, \text {,max } \\
I=[0,2] \quad \operatorname{int}(I)=0, \text { sup }(I)=2 \\
\max (I)=2 .
\end{gathered}
$$

$$
\begin{aligned}
& I=\left\{x \in \mathbb{R}: x^{2}<2\right\}=(-\sqrt{2},+\sqrt{2}) \\
& \sup (I)=\sqrt{2} \\
& \inf (I)=-\sqrt{2} \\
& \min (I)=D N E \\
& \max (I)=D N E
\end{aligned}
$$

Axiom st completeness:
Every non-empty subset ot real numbers $A \subseteq \mathbb{R} \mathbb{Q}$. that is bounded above has a least upper bound. $S \in \mathbb{R}$.

$$
A=\left\{x \in \mathbb{Q}: x^{2}<2\right\} \longleftarrow \sqrt{2} \notin \mathbb{Q} .
$$

\Rightarrow Dosh't hold tor Q but it holds in \mathbb{R}

Ex: Prove that it a is an element of A and is also an upper bound of A Hen it must be that $a=\sup (A)$.

Proof: A - is bounded from above \Rightarrow By axiom of completeness there exists $b \in \mathbb{R} \quad b=\sup (A)$.
b is the least upper bound so, by tet. ot l.u.b we know that

$$
x \leqslant b \quad \forall x \in A .
$$

\Rightarrow in particular $a \leqslant b$.
As a - upp. bound

$$
b-\sup (A)
$$

from betinition of l.u.b it a is any other upper bound $b \leqslant a$

$$
\Rightarrow a=b
$$

Ex:
Prove that it a set $A \subseteq \mathbb{R}$ has a least upper bound then it is unique.
prost: Assume least upper bound of A is not unique.

$$
S_{1} S_{2} \in \mathbb{R} \text { so that } S_{1}=\sup (A), S_{2}=\sup (A) \text {. }
$$

As S_{1} is l.u.b and S_{2} is other u.p

$$
\Rightarrow \quad S_{1} \leqslant S_{2}
$$

At same time s_{2} is l.a.b and s_{1} is other.u.b.

$$
\begin{gathered}
\Rightarrow \quad S_{2} \leqslant S_{1} \\
\Rightarrow\left(S_{1}=S_{2}\right)
\end{gathered}
$$

$$
A, B \xrightarrow{f} \mathbb{R} .
$$

show theet $f(A \cap B) \subseteq f(A) \cap f(B)$.
proot:

$$
\begin{aligned}
& x \in A \wedge B \Leftrightarrow x \in A \text { and } x \in B . \\
& f(A)=\{f(x): x \in A\} \\
& \Rightarrow f(x) \in f(A) \\
& \quad f(x) \in f(B)\} f(x) \in f(A) \cap f(B)
\end{aligned}
$$

$$
\Rightarrow
$$

