$\underline{\text { Lecture 1 }}$ Plan: $\left\{\begin{array}{l}\text { : Sets } \\ : \text { "It and only } \\ : \text { Induction } \\ \text { Functions }\end{array}\right.$
"Set $=$ collection of elements"
Ex: $\quad S=\{1,2,3\}$

$$
\begin{aligned}
& \mathbb{Q}=\{1,2,3, \ldots .\}-\text { nataral numbers. } \\
& \mathbb{Q}=\left\{\frac{a}{b}, a, b \in \mathbb{N}, b \neq 0\right\}-\text { Rational } \\
& \text { numbers. }
\end{aligned}
$$

R - Real numbers

$$
\begin{aligned}
& S=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots .\right\} \\
& S=\left\{x \in \mathbb{Q}: x^{3}<3\right\}
\end{aligned}
$$

$$
0 \text { - empty set - "set with } \quad \text { ho elements". }
$$

(2) Operations on sets:

$$
\begin{aligned}
& A, B-\text { sets } \\
\Rightarrow & A \cup B^{\prime}=S \quad \Leftrightarrow \quad \text { union of two sets" } \\
& K^{\prime \prime} \text { inter setion of } \operatorname{sets} A \cap B " \\
& A \cap B \quad x \in A \cap B \Leftrightarrow x \in A \text { and } x \in B
\end{aligned}
$$

$$
\begin{aligned}
x \in & A_{1} \cup A_{2} \cup \ldots \cup A_{n} \Leftrightarrow x \in A_{1} \text { or } x \in A_{2} \ldots \text { or } x \in A_{n} \\
x \in A_{1} \cap A_{2} \ldots \cap A_{n} \Leftrightarrow & x \in A_{1} \text { and } x \in A_{2} \ldots \text { and } x \in A_{n} . \\
& \bigcup_{n=1}^{\infty} A_{n} \cup A_{2} \cup \ldots \text { notation } \begin{array}{l}
\text { union of sets. } \\
\\
\\
\\
\bigcap_{n=1}^{\infty} A_{n}=A_{1} \cap A_{2} \cap A_{3} \cap \ldots .
\end{array}
\end{aligned}
$$

Example: $A_{n}=\left\{\frac{1}{m}, m=n, n+1, n+2 \ldots\right\}$

$$
\begin{aligned}
A_{1} & =\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\} \\
A_{2} & =\left\{\frac{1}{2}, \frac{1}{3}, \ldots .\right\} \\
A_{3} & =\left\{\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\} \\
\bigcup_{n=1}^{\infty} A_{n} & =A_{1} ; \\
\bigcap_{n=1}^{\infty} A_{n} & =\varnothing
\end{aligned}
$$

Prost: Assume that $B=\bigcap_{n=1}^{\infty} A_{n}$ is not empty.

If B is not empty then B contains at leas one element $\frac{1}{m} \in B$ for some $m \in A T$.

By definition of infinite intersection

$$
\frac{1}{m} \in \bigcap_{n=1}^{\infty} A_{n} \Leftrightarrow \frac{1}{m} \in A_{1} \quad \frac{1}{m} \in A_{2}, \frac{1}{m} \in A_{3} \ldots
$$

then take $A_{m+1}=\left\{\frac{1}{m+1}, \frac{1}{m+2}, \ldots.\right\}$
obviously

$$
\frac{1}{m} \notin A_{m+1}
$$

\Rightarrow Contradiction \Rightarrow Assumption
" $\bigcap_{n=1}^{\infty} A_{n}$ is not empty" is wrong.

$$
\Rightarrow \bigcap_{n=1}^{\infty} A_{n}=\varnothing \text {. }
$$

(3) Inclusion Relation:

$$
A \subseteq B<\underline{\text { Det. }}>\begin{array}{ll}
& \text { it } x \in A \\
\text { then } x \in B
\end{array}
$$

" A is a subset of the set B "

$$
A \backslash B=\{x \in A: x \in B\}
$$

"complement it

$$
\operatorname{Bin} A^{\prime \prime}
$$

(4) Proving theores:
"if and only if" - condition.
Example: Prove that two real numbers $a, b \in \mathbb{R}$ are equal $a=b$
it and only it $\quad|a-b|<\frac{1}{n}$
for all $n \in \mathbb{N}$.
Proof: (\Rightarrow) it $a=b$ then $|a-b|<\frac{1}{h}, n \in \mathbb{N}$.

$$
(\Leftarrow) \text { it }|a-b|<\frac{1}{n}, \forall n \in \mathbb{N}
$$

Hen $a=b$.
(\Rightarrow) : it $a=b$ then $a-b=0$

$$
\Rightarrow|a-b|=0 \text { and } 0<\frac{1}{n} \forall n \text {. }
$$

$\Rightarrow|a-b|<\frac{1}{n}$ for all n.

Then, it $a \neq b \Rightarrow|a-b|=\varepsilon>0$
but we can find a number N large enough
To have $\quad\left(\frac{1}{N}<\varepsilon\right.$.
\Rightarrow from asscenption

We conclude that

$$
\left.\begin{array}{l}
|a-b|=\varepsilon \\
|a-b|<\varepsilon
\end{array}\right\} \text { contradiction }
$$

$\Rightarrow a=b$
(5) Proof by induction:

Prosit by induction:
(1) Prove that from "Statement $n=$ true" $^{\prime \prime}$ follows "Statement $n+1=$ true".
(2) Chech that "Statemen ti = true"

Example: Prove that $n(n+1)$ is even number for

$$
n=1,2,3, \ldots
$$

Statement $_{n}=$ "n(n+1) is even"
Induction step:
it $n(n+1)$ is even then $(n+1)(n+2)$ is even
take a ditterance:

$$
\begin{aligned}
&(n+1)(n+2)-n(n+1)=2 \cdot(n+1) . \\
& \Rightarrow(n+1)(n+2)= \underbrace{(n(n+1)}_{\text {even }}+2 \cdot(n+1)
\end{aligned}
$$

\Rightarrow even.
(2) check Statement 1:

$$
n=1 \Rightarrow n(n+1)=1 \cdot 2-\text { even. }
$$

Example:
Let $y_{1}=6$ and $y_{n+1}=\left(2 y_{n}-6\right) / 3$.

$$
\begin{aligned}
& y_{2}=\frac{\left(2 \cdot y_{1}-6\right)}{3} \\
& =\frac{2 \cdot 6-6}{3}=\frac{6}{3}=2
\end{aligned}
$$

Prove that $y_{n}>-6$ tor

$$
n=1,2, \ldots .
$$

Solution:

$$
\text { Statement } n=" y_{n}>-6 \text { istrue". }
$$

Induction step:
"Statemen $n+$ rue" \Rightarrow "Statencent $n+1$ istrue"

$$
y_{n}>-6>y_{n+1}>-6
$$

Assume $y_{n}>-6$. $\operatorname{len} \quad y_{n}=-6+\epsilon$
some pusitive Real number.

$$
\begin{aligned}
y_{n+1} & =\frac{\left(2 y_{n}-6\right)}{3}=\frac{2 \cdot(-6+\epsilon)-6}{3} \\
& =\frac{-18+26}{3}=-6+\left(\frac{2}{3} \epsilon\right) \text { pusitive } \\
& \Rightarrow y_{n+1}>-6=1 \text { Statenent }_{n+1}{ }^{\prime \prime}
\end{aligned}
$$

(2) Check Statemeat, : $y_{1}>-6$
but we kow that $y_{1}=6$.

Det: A function (a map) from a A set A to set B is a rule f : which assign to every element $a \in A$ an element $f(a) \in B$.

