GDE, monodromy and 3D-mirror symmetry

I Vertex functions:

\[G \subset \mathbb{C}^n \Rightarrow X = T^*\mathbb{C}^n // B G \]

\[\Theta \in \mathbb{R}^{2k(G)} \text{ - stability parameter for GIT} \]

\[T \cong \mathbb{T} \text{ - torus acting on } X, X^T \text{ - finite} \]

\[V_p(z) = \sum_d \# \left\{ \text{rational curves } \mathbb{P}^1 \rightarrow X \text{ passing through } p \in X^T \text{ of degree } d \right\} \cdot z^d \]

More precisely: moduli spaces & quasimaps

\[\mathbb{Q} M_p^d = \left\{ \mathbb{P}^1 \rightarrow X : f(\infty) = p \in X^T, \deg f = d \right\} \]

\[V_p(z) = \sum_{d \in H_2(X, \mathbb{Z})} X(\mathbb{Q} M_p^d) \cdot z^d \]

\[z^d = z_1^d \cdots z_r^d \text{ - } "Kähler parameters" \text{ (Dynamical)} \]

\[X(\mathbb{Q} M_p^d) \in \mathbb{Q}(a_1, \ldots, a_k, q) \text{ - } "equivariant parameters" \]
In examples $V_p(z)$ are some interesting q-hypergeometric series with finite radius of convergence.

How it depends on stability parameter?

$$V_p(z) = \sum_{d \in \text{Cone}_\Theta \subset \mathbb{C}_2(x,z)} C_d(a) z^d$$

defined by choice of stability Θ.

Important idea:

1. $V_p(z), p \in X^\tau$ — form a basis of solutions of certain q-difference equation

2. This q-d.e. doesn't depend on the choice of stability Θ

Monodromy:

$$V_p^\Theta(z) = \sum \text{Mon}_{p,q}(z) V_q^\Theta(z)$$
Example (oversimplified)

\[\sim \quad X_{\pm \theta} = T^* \mathbb{P}^* \approx \text{point} \]

For vertex functions with stability conditions we can find:

\[V_{+\theta} = \sum_{n=0}^{\infty} \left(\frac{q}{q_n} \right)^n z^n = \prod_{n=0}^{\infty} \frac{1 - \frac{1}{2} z q^n}{1 - z q^n} \]

\((x)_n = (1-x) \cdots (1-q^{n-1} x) \)

\[V_{-\theta} = \sum_{n=0}^{\infty} -\frac{1}{(q)_n} z^n (\frac{q}{x})^n = \prod_{n=1}^{\infty} \frac{1 - q^{n/2}}{1 - q^{n/2} z} \]

Both functions solve the q-difference equation:

\[F(z q) = \frac{1 - z}{1 - \frac{1}{2} q z} \cdot F(z) \]

The monodromy is given by elliptic function:

\[\text{Mon}(z) = \frac{V_{+\theta}}{V_{-\theta}} \sim \frac{\mathcal{G}(z)}{\mathcal{G}(z)} \]

\[\mathcal{G}(z) = \prod_{n=0}^{\infty} (1 - z q^n) (1 - \frac{q^{n+1}}{z}) \quad \text{Jacobi theta function.} \]
The main problem: compute qde for arbitrary X

What do we know about qde already?

$qde's$ are of the form:

1. $\Psi(z, q^L) = M_{\xi}(z) \Psi(z), \quad L \in \text{Pic}(X)$
 $M_{\xi}(z) \subseteq \text{End}(K_{\tau}(X))(z)$.

2. $M_{\xi}(z) = B_{w_1}(z) \cdots B_{w_n}(z)$

Pic(X)-periodic arrangement of hyperplanes called "walls"

$B_{w}(z)$ - "wall crossing" operators, which has poles only at:

$z = q^{w}$

Main problem: understand $B_{w}(z)$
In particular, the monodromy has similar factorization:

$$\text{Mon}(z) = \prod_{w \in \text{Walls}} B_w(z)$$

Central idea: one can construct $B_w(z)$ from the limit of monodromy:

$$\lim_{q \to 0} \text{Mon}(z q^w) \sim \ldots B_w(z)$$

Essentially, only one factor of contribute in limit

If we know the monodromy, then we can reconstruct $B_w(z) \Rightarrow \text{qDE} \Rightarrow \text{vertex functions}$

Back to our prime example:

$$\text{Mon}(z) = \frac{V_{\text{ref}}}{V_0} \sim \frac{\mathcal{C}(z^z)}{\mathcal{C}(z)}$$

$$\mathcal{C}(z) = \prod_{k=0}^{\infty} (1-z q^w) (1-z q^{w'})$$

For $w \in \mathbb{Q}$, we have:

$$\lim_{q \to 0} \frac{\mathcal{C}(z q^w)}{\mathcal{C}(z q^{w'})} = \left\{ \begin{array}{ll}
\frac{1}{q^{w^{1/2}}} & , \quad w \notin \mathbb{Z} \\
\frac{1-2z}{1-z} \frac{1}{q^{w^{1/2}}} & , \quad w \in \mathbb{Z}.
\end{array} \right.$$
Monodromy from 3D-mirror symmetry:

$$V_p(z) = \sum_{d \in \Omega^d(X, \mathbb{R})} C_d(a) \cdot z^d$$

holom in z near $z=0$

typically have poles $a \sim q^i$

$i=1, 2, \ldots$

accumulating near $a=0$

What about a basis of solutions holom in a near $a=0$?

Theorem [Aganagic-Okoanov, 1604.00423]

1. There exist a basis of solutions V_p^i holomorphic near $a=0$.

2. Transition matrix

$$V_p^i = \sum_{q \in \mathcal{X}^+} U_{p, q} (a, z) \cdot V_p (z)$$

is the matrix of the "elliptic stable envelope" in the basis of fixed points

$$U_{p, q} = \text{Stab}_{\sigma}^E(p) \big|_q$$

$p, q \in \mathcal{X}^+$

$$\text{Stab}_{\sigma}^E(p) \in E_{\mathbb{C}}(X)$$

called "elliptic stable envelope at p"
What is the geometric meaning of V_p?

Conjecture [3D-mirror symmetry]

1. There exists a "3D-mirror" variety X' (symplectic dual of X) together with

$$z \leftrightarrow a$$

In words: equivariant and Kähler parameters are exchanged by mirror symmetry

2. $V_p^i = \sum c_i(z) a^d$

- vertex functions of X'

Note that: a is Kähler parameter of X'.
z is equivariant for X'.

Elliptic stable envelope of X

= transition matrix from basis of solutions $V_p^X(z)$ to basis of solutions $V_p^{X'}(a)$
Monodromy from mirror symmetry.

Vertex functions for X_{Θ^+} holom. near $z \approx 0$

Vertex functions for X_{Θ^-} holom. near $z \approx 0$

\[\text{Stab}_{\Theta^+}^{X^!} \left(\text{Stab}_{\Theta^-}^{X^!} \right)^{-1} \]

Vertex functions of mirror $X^!$ holom near $a \approx 0$

In this way we obtain

\[\text{Mon}(z) = \left(\text{Stab}_{\Theta^+}^{X^!} \right)^{-1} \circ \left(\text{Stab}_{\Theta^-}^{X^!} \right) = R_{X^!}(z, a) \]

This object is called "elliptic dynamical R-matrix at $X^!".

This gives explicit formulas for the monodromy at qde of X (enumerative geometry of X) in terms of elliptic cohomology of $X^!$ (algebraic topology of $X^!$)
Back to wall crossing operators:

$$U_{p,q}(z) = \text{Stab}^{Ell}_{\vartheta}(p) \big|_q$$

Theorem [Y. Kononov, A.S.]:

If $w \in H^2(X,\mathbb{R})$ is on the wall and $w' \in H^2(X,\mathbb{R})$ small deformation of w then the limit

$$\lim_{q \to 0} U(zq^w, a) = A^{w'}(a) \cdot Z(z)$$

depends only on a.

1. $A^{w'}_{p,q}(a) = \text{Stab}^{Kth, w'}_X(p) \big|_q$

2. $Z_{p,q}(a) = \text{Stab}^{Kth, w}_{Y_w}(p) \big|_q$

$w \to$ finite group $\mu_w = \langle e^{2\pi i w} \rangle \subset X!$

$Y_w = (X!)^{\mu_w} \subset X!$ μ_w - fixed subvariety in the mirror.
The main result:

\[B_w(z) = \lim_{q \to 0} \text{Mon}(z q^w) = A_w^{-1} \begin{bmatrix} Z_+ & Z_- \end{bmatrix} A_w \]

\[R_{Y_w} = K \text{ theoreic } R\text{-matrix} \]

at the subvariety \(Y_w \subset X \).

In representation theory \(R_{Y_w} \) is "trigonometric R-matrix" at some quantum group which acts on \(K_T(Y_w) \).

Theorem:

In the stable basis at \(K_T(X) \) with slope \(w' \), the matrix at the wall crossing operator \(B_w(z) \) coincides with trigonometric R-matrix at the quantum group associated with \(Y_w \) in representation \(K_T(Y_w) \).

"Dynamical Weyl group" = "R-matrices at" \(X \)

\(Y_w \subset X \)!
Example 1 \(U_q(\widehat{g_{\ln}}) - U_q(\widehat{g_{\ln}}) \) duality.

\[X = A_{n-1} \text{-type quiver variety} \]

\[Y_{w_j} X^j = A_{m-1} \text{-type quiver varieties.} \]

\[B_{w_j}(z) \sim R \text{-matrices at } U_q(\widehat{g_{\ln}}) \]

\[M(z) = B_{w_1}(z) ... B_{w_n}(z) \sim R_{i,n-1} R_{i,n-2} ... R_{i,1} \]

And the quantum difference equation for \(X \)

\[\Psi(z, q^z) = M(z) \Psi(z) \]

Turns to quantum Knizhnik-Zamolodchikov equation for \(U_q(\widehat{g_{\ln}}) \)

Dynamical equations for \(U_q(\widehat{g_{\ln}}) \)

3D-mirror symmetry

qKZ equations for \(U_q(\widehat{g_{\ln}}) \)
Example 2 Toroidal algebras

\[X = \text{Hilb}^n(\mathbb{C}^2) \]

\[K_T(X) \cong U_{q,t}(\widehat{\mathfrak{g}_n}) \]

(Elliptic Hall algebra,
Ding-Iohara-Miki algebra ...)

\[H^2(X, \mathbb{R}) = \mathbb{R}, \quad \text{Walls} = \left\{ \frac{a}{b} \in \mathbb{Q} \mid |b| \leq n \right\} \]

\[n=3 \quad \bullet \quad -\frac{1}{3} \quad -\frac{1}{2} \quad -\frac{1}{3} \quad \circ \quad \frac{1}{3} \quad \frac{1}{2} \quad \frac{2}{3} \quad i \quad \frac{1}{3} \]

\[M(z) = B_{\frac{1}{3}}(z) B_{\frac{1}{2}}(z) B_{\frac{2}{3}}(z) \]

3D Mirror: \(X' \cong X \)

\[w = \frac{a}{b} \Rightarrow \mu_w = \langle e^{2\pi i \frac{a}{b}} \rangle \subseteq X' \]

\[Y_w = (X')^{\mu_w} = \]

Cyclic quiver of length \(b \)

\[K_T(Y_w) \cong U_{q,t}(\widehat{\mathfrak{g}_n}) - \text{quantum toroidal algebras} \]

\[N(z) \sim \mathbb{C}[U_{q,t}(\widehat{\mathfrak{g}_3}) U_{q,t}(\widehat{\mathfrak{g}_2}) U_{q,t}(\widehat{\mathfrak{g}_3}) \left[\begin{array}{c} \text{Generalized} \end{array} \right] \quad q \in \mathbb{Z} \]